Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.
نویسندگان
چکیده
Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas.
منابع مشابه
The strategy for enhancing temozolomide against malignant glioma
A combined therapy of the alkylating agent temozolomide (TMZ) and radiotherapy is standard treatment, and it improves the survival of patients with newly diagnosed glioblastoma (GBM). The DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) removes the most cytotoxic lesions generated by TMZ, O(6)-methylguanine, establishing MGMT as one of the most important DNA repair mechanisms o...
متن کاملInterferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells.
Glioblastoma is the most common malignant brain tumor in adults and characterized by a poor prognosis. Glioma cells expressing O(6)-methylguanine DNA methyltransferase (MGMT) exhibit a higher level of resistance toward alkylating agents, including the standard of care chemotherapeutic agent temozolomide. Here, we demonstrate that long-term glioma cell lines (LTL) as well as glioma-initiating ce...
متن کاملEnhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells
O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechani...
متن کاملEffectiveness of interferon-beta and temozolomide combination therapy against temozolomide-refractory recurrent anaplastic astrocytoma
BACKGROUND Malignant gliomas recur even after extensive surgery and chemo-radiotherapy. Although a relatively novel chemotherapeutic agent, temozolomide (TMZ), has demonstrated promising activity against recurrent glioma, the effects last only a few months and drug resistance develops thereafter in most cases. Induction of O6-methylguanine-DNA methyltransferase (MGMT) in tumors is considered to...
متن کاملO6-Methylguanine-Methyltransferase (MGMT) Promoter Methylation Status in Glioma Stem-Like Cells is Correlated to Temozolomide Sensitivity Under Differentiation-Promoting Conditions
Glioblastoma (GBM) is the most malignant type of primary brain tumor with a very poor prognosis. The actual standard protocol of treatment for GBM patients consists of radiotherapy and concomitant temozolomide (TMZ). However, the therapeutic efficacy of this treatment is limited due to tumor recurrence and TMZ resistance. Recently isolated, glioma stem-like cells (GSCs) are thought to represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncology reports
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2015